Skip to Main Content
  • About Us
    • Contact Us
    • Visit Us
    • CLaSP blogs, columns, and podcasts
    • Calendar
    • CLaSP Intranet
    • Daily Planet
    • History of CLaSP
    • News
    • Team Spotlights
      • Faculty Spotlights
      • Student Spotlights
      • Alumni Spotlights
  • Academics
    • Why Michigan for Climate & Space?
    • Undergraduate Studies
    • Undergraduate Research
    • Sequential Undergraduate/Graduate Studies (SUGS)
    • Graduate Studies
    • PhD Program
    • Master’s Program
    • Non-Traditional Students
    • Contacts
    • Fall 2019 Course Schedule
  • Research
    • Atmospheric & Climate Sciences
    • Space & Planetary Sciences
    • Theory & Computational Methods
    • Space Science & Engineering
    • Labs, Centers & Research Groups
  • People
    • Tenure/Tenure-Track Faculty
    • Research Faculty
    • Emeritus Faculty
    • Research Fellows
    • Graduate Students
    • Undergraduate Students
    • SPRL Engineers & Staff
    • Staff
  • Resources
    • For Fellowships and Postdocs
    • For Graduate Students
    • For Undergraduates
    • Student Groups
    • Careers
    • Security Policy
    • CSRB Roof & Lab Safety
    • Climate & Space Faculty Committees 2018-2019
  • Alumni
    • National Advisory Board
    • Give to CLaSP
    • Volunteer
    • Job Placement Info
Climate and Space Sciences and Engineering
Climate and Space Sciences and Engineering
CONNECT WITH US:
About Us
Research
People
Academics
Resources
Alumni
  • About Us
    • Contact Us
    • Visit Us
    • Discovery and Innovation for a Better World
    • Diversity Statement
    • CLaSP Seminar Recordings
    • CLaSP blogs, columns, and podcasts
    • Calendar
    • CLaSP Intranet
    • Daily Planet Newsletter
    • History of CLaSP
    • News
    • Team Spotlights
  • Research
    • Atmospheric & Climate Science
    • Space & Planetary Sciences
    • Theory & Computational Methods
    • Instrumentation and Observational Methods
    • Labs, Centers & Research Groups
  • People
    • Tenure/Tenure-Track Faculty
    • Research Faculty
    • Emeritus Faculty
    • Affiliated Faculty
    • Research Fellows
    • Graduate Students
    • Undergraduate Students
    • SPRL Engineers & Staff
    • Staff
  • Academics
    • Why Michigan for Climate & Space?
    • Undergraduate Studies
    • Undergraduate Research
    • Graduate Studies
    • Course schedule information
    • Contact Us
  • Resources
    • For Fellowships and Postdocs
    • For Graduate Students
    • For Undergraduates
    • Student Groups
    • Careers
    • Security Policy
    • CSRB Building Safety
    • Climate & Space Faculty Committees 2020-2021
  • Alumni
    • National Advisory Board
    • Give to CLaSP
Research > Theory & Computational Methods > Planetary Atmospheres
  • Research
    • Atmospheric & Climate Sciences
      • Atmosphere – Biosphere Interactions
      • Atmospheric Chemistry
      • Atmospheric Dynamics
      • Climate: Change & Modeling
      • Weather: Clouds & Precipitation
      • Paleoclimate
    • Space & Planetary Sciences
      • Thermosphere, Ionosphere, and Magnetosphere
      • Planetary Atmospheres & Magnetospheres
      • Sun, Solar Wind & Heliosphere
      • Space Weather
    • Theory & Computational Methods
      • Numerical Methods & Scientific Computing
      • Statistical Methods & Data Assimilation
      • Center for Space Environment Modeling
      • Center for Radiative Shock Hydrodynamics
    • Instrumentation and Observational Methods
      • Ground-based and Airborne Instrumentation
      • Space Missions & Instrumentation
      • Radiative Transfer, Remote Sensing & Instrumentation
      • Space Physics Research Laboratory
    • Labs, Centers & Research Groups

Planetary Atmospheres

Illustration of what the InSight lander might look like on the surface of Mars

Over the past four decades the advent of new measurements of the upper atmospheres and ionospheres of solar system planets and moons from various spacecraft missions has been astounding.

In Climate & Space, these measurements are used to characterize the structure and dynamics of the atmospheric environments and to compare them to one another. In particular, we focus our research on Venus, Mars, Jupiter, Saturn, and various moons including Io, Enceladus and Titan, as well as comets. Furthermore, we use and develop modeling tools, from simple 1-D to complex multi-dimensional frameworks. These tools are used to predict the characteristics of the planetary atmosphere and to interpret measurements once they are obtained. We study the physical, chemical, meteorological, and astrobiological processes of planets, satellites, and comets, and investigate the underlying processes that maintain the observed atmospheric structures and drive their variations over various timescales (e.g., solar cycle, seasonal, diurnal, etc.).

Faculty

Sushil Atreya
Stephen Bougher
Michael Combi
Tamas Gombosi
Xianglei Huang
Michael Liemohn
Andrew Nagy
Christopher Parkinson
Nilton Renno
Valeriy Tenishev
Gabor Toth

Related Websites

Dr. Bougher’s planetary science research at U-M
Electric field sensor for charged dust and sand particles (Prof. Renno)
Planetary Science Laboratory (PSL)
Mars Science Laboratory at the NASA Jet Propulsion Laboratory (JPL)
US Contribution to the Rosetta Mission to Comet 67P/Churyumov-Gerasimenko at NASA JPL
College of Engineering | University of Michigan
Climate and Space Sciences and Engineering

Climate & Space Research Building
University of Michigan
2455 Hayward Street
Ann Arbor, MI 48109-2143

Follow The College

Facebook

Twitter

Instagram

LinkedIn

YouTube

  • © The Regents of the University of Michigan Ann Arbor, MI 48109 USA
  • Privacy Policy
  • NON-DISCRIMINATION POLICY
  • Campus Safety
  • U-M Home
  • Give Feedback
  • CLaSP Intranet