• Skip to primary navigation
  • Skip to main content
  • Skip to footer
CLASP site logo svg
  • Contact Us
  • CLASP News
  • Give to U-M Climate & Space

Search

  • About Us
    • Contact Us
    • Visit Us
    • Department Overview
    • #18 (no title)
    • Publications
    • History of CLaSP
      • CLaSP History: Atmospheric and Oceanic
      • CLaSP History: Space Science and Engineering
    • Daily Planet Newsletter
    • Team Spotlights
      • Faculty Spotlights
      • Student Spotlights
      • Alumni Spotlights
    • CLASP Inranet
    • CLASP Seminar Recordings
  • Research
    • Atmospheric & Climate Sciences
      • Atmosphere – Biosphere Interactions
      • Atmospheric Chemistry
      • Atmospheric Dynamics
      • Climate: Change & Modeling
      • Weather: Clouds & Precipitation
    • Space & Planetary Sciences
      • Aeronomy
      • High Energy Density Physics/Laboratory Astrophysics
      • Thermosphere, Ionosphere, and Magnetosphere
      • Planetary Atmospheres & Magnetospheres
      • Sun, Solar Wind & Heliosphere
      • Space Weather
    • Theory & Computational Methods
      • Numerical Methods & Scientific Computing
      • Statistical Methods & Data Assimilation
      • Center for Radiative Shock Hydrodynamics
      • Center for Space Environment Modeling
      • SWMF Downloadable software
    • Instrumentation & Observational Methods
      • Ground-based and Airborne Instrumentation
      • Space Missions & Instrumentation
      • Radiative Transfer, Remote Sensing & Instrumentation
      • Space Physics Research Laboratory
    • Labs, Centers & Research Groups
  • People
  • Academics
    • Why Michigan for Climate & Space?
    • Undergraduate Studies
      • Declaring your Climate & Space major
      • BSE Climate and Meteorology
        • Climate Science and Impacts Concentration
        • Meteorology Concentration
      • BSE Space Science & Engineering
        • Space Science Concentration
        • Space Instrumentation Concentration
      • Climate and Space Sciences and Engineering Minor
    • Undergraduate Research
      • REU at Climate & Space
      • UM-SANSA International Research Experience for Students (IRES)
    • Graduate Studies
      • Graduate Admissions
      • Master’s Program
        • The Master of Engineering Degree in Applied Climate
        • The Master of Engineering Degree in Space Engineering
        • The Master of Science Degree in Atmospheric and Space Sciences
      • Climate Change Solutions Graduate Certificate
        • Climate Solutions Certificate Coursework
        • Climate Solutions Certificate Electives
        • Climate Solutions How to Apply
      • Sequential Undergraduate/Graduate Studies (SUGS)
      • PhD Program
      • G.R.E.A.T Workshop
    • Course Syllabus Information
    • Course schedule information
    • Contact Us
  • Resources
    • For Undergraduate Students
    • For Graduate Students
    • For Fellowships and Postdocs
    • Student Groups
      • Graduate and Undergraduate Student Organization (GUStO)
      • Michigan Geophysical Union
    • Careers
      • Job Placement Info
    • Security Policy
    • CSRB Building Safety
    • Climate & Space Faculty Committees 2022-2023
  • Alumni
    • National Advisory Board
    • Give to U-M Climate & Space
    • Contact Us
    • CLASP News
    • Give to U-M Climate & Space

Atmospheric & Climate Sciences

home_outline/Research/Atmospheric & Climate Sciences
  • Atmospheric & Climate Sciences
    • Atmosphere – Biosphere Interactions
    • Atmospheric Chemistry
    • Atmospheric Dynamics
    • Climate: Change & Modeling
    • Weather: Clouds & Precipitation
    • Paleoclimate
  • Space & Planetary Sciences
    • Aeronomy
    • High Energy Density Physics/Laboratory Astrophysics
    • Thermosphere, Ionosphere, and Magnetosphere
    • Planetary Atmospheres & Magnetospheres
    • Sun, Solar Wind & Heliosphere
    • Space Weather
  • Theory & Computational Methods
    • Numerical Methods & Scientific Computing
    • Statistical Methods & Data Assimilation
    • Center for Radiative Shock Hydrodynamics
    • Center for Space Environment Modeling
    • Space Weather Modeling Framework (SWMF)
    • SWMF Downloadable software
  • Instrumentation & Observational Methods
    • Ground-based and Airborne Instrumentation
    • Space Missions & Instrumentation
    • Radiative Transfer, Remote Sensing & Instrumentation
    • Space Physics Research Laboratory
  • Labs, Centers & Research Groups


Atmosphere – Biosphere Interactions

We conduct experimental and modeling studies of trace gases from the biosphere, atmospheric deposition of gas and particle phase species, and boundary layer meteorology to understand the effects of vegetation in the physics and chemistry of the atmosphere. Learn More

Atmospheric Chemistry

We model atmospheric chemical reactions as well as gas, aqueous and aerosol tropospheric chemistry at regional and global levels to understand the effects of natural and anthropogenic emissions of gases and aerosols on climate and air quality. Related observations are made at the UM Biological Station. Learn More

Atmospheric Dynamics

We observe the atmospheric motions, assess their governing equations, investigate the complex interplay between the scales, study ocean dynamics, and model the general circulation of the atmosphere and employ direct numerical simulation techniques to resolve the complex physical processes that govern the weather and climate systems. Learn More

Climate: Change & Modeling

We study the changing climate in regional and global scales by developing, improving and using models and modeling techniques that provide present and future climate scenarios. The codes require high-performance computing resources, and include integration of satellite products as well as interactions with the biosphere, cryosphere, and atmospheric chemistry. Learn More

Weather: Clouds & Precipitation

We examine cloud processes on scales ranging from tens of meters to thousands of kilometers, including cloud structure and dynamics, convection, cloud microphysics, cloud-aerosol interactions as well as the response of both tropical and extratropical clouds and precipitation to a warming climate. Learn More

Paleoclimate

Our goal is to understand the geological record of Earth’s climate history that has experienced changes from icehouse to hothouse states and back, over time spans of millions of years to decades. This helps us gain insights into the present-day climate system, its variability and its vulnerability. Learn More

Footer

CoE-horiz-logo-footer

  • Contact Us
  • CLASP News
  • Give to U-M Climate & Space
  • Michigan Engineering
  • Strategic Vision
  • Graduate and Professional
  • Undergraduate
  • U-M Engineering Research News

© 2021 The Regents of the University of Michigan Ann Arbor, MI 48109 USA

Privacy Policy | Non-Discrimination Policy | Campus Safety

  • Email
  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube

© 2023 The Regents of the University of Michigan Ann Arbor, MI 48109 USA Privacy Policy | Non-Discrimination Policy | Campus Safety