Zhenguang Huang

Zhenguang Huang

Assistant Research Scientist

Location

1432A Climate & Space Research Building
2455 Hayward Street
Ann Arbor, MI 48109-2143

Primary Website

Education

  • Ph.D., Atmospheric, Oceanic and Space Sciences and Scientific Computing, University of Michigan, 2014
  • M.S., Atmospheric, Oceanic and Space Sciences, University of Michigan, 2010
  • B.S., Geophysics, University of Science and Technology of China, 2008

Professional Service

  • Member, American Geophysical Union
  • Modeling support for the Geospace model operated at NOAA SWPC
  • Panelist and external reviewer for NASA proposal review panels
  • Reviewer for Astronomy and Astrophysics, The Astrophysical Journal, Frontiers in Astronomy and Space Sciences, Journal of Geophysical Research, Monthly Notices of the Royal Astronomical Society, Physical Review Letters, Space Weather, Icarus
  • Session chair, Comet Dynamics I: Spins and Strengths, DPS 48 / EPSC 11 Meeting, Pasadena CA, 2016
  • Session chair, Predicting solar wind properties across the heliosphere with integrated modeling efforts (empirical or first-principles), 2022 TESS (Triennial Earth-Sun Summit), Bellevue/Seattle, Washington, 2022
  • Session chair, Modeling CME initiation and propagation through the heliosphere, the SHINE workshop, Waikiki, HI, 2022

Research Interests

  • Core developer of the Space Weather Modeling Framework (SWMF) and Block Adaptive Tree Solar wind Roe-type Upwind Scheme (BATS-R-US)
  • Coronal heating mechanisms
  • 3-D global solar wind simulations from the Sun to the Earth
  • 3-D global magnetosphere simulations for the Earth and various planets including exoplanets

Awards

  • Climate and Space Sciences and Engineering Departmental Award, 2020
  • Selected participant of the 9th and 10th inaugural CAS-NAS (Chinese Academy of Sciences and U.S. National Academy of Sciences) Forums for New Leaders in Space Science, 2019
  • NASA Group Achievement Award (University of Michigan Rosetta Modeling Team), 2017
  • ESA Excellence Recognition for Rosetta Modeling, 2017

Publications

  1. J. Huang, J. C. Kasper, D. E. Larson, M. D. McManus, P. Whittlesey, R. Livi, A. Rahmati, O. Romeo, K. G. Klein, W. Sun, B. van der Holst, Z. Huang, L. K. Jian, A. Szabo, J. L. Verniero, C. H. K. Chen, B. Lavraud, M. Liu, S. T. Badman, T. Niembro, K. Paulson, M. Stevens, A. W. Case, M. Pulupa, S. D. Bale, and J. S. Halekas (2023). Parker Solar Probe Observations of High Plasma β Solar Wind from the Streamer Belt. The Astrophysical Journal Supplement, 265(2), 47, doi:10.3847/1538-4365/acbcd2.
  2. Z. Huang, G. Toth, N. Sachdeva, L. Zhao, B. van der Holst, I. Sokolov, W. B. Manchester, and T. I. Gombosi (2023). Modeling the solar wind during different phases of the last solar cycle. The Astrophysical Journal Letter, 946(2), L47, doi:10.3847/2041-8213/acc5ef.
  3. I. V. Sokolov, H. Sun, G. Toth, Z. Huang, V. Tenishev, L. Zhao, J. Kota, O. Cohen, and T. I. Gombosi (2023). High resolution finite volume method for kinetic equations with Poisson brackets. Journal of Computational Physics, 476, 111923, doi:10.1016/j.jcp.2023.111923.
  4. A. Jivani, N. Sachdeva, Z. Huang, Y. Chen, B. van der Holst, W. Manchester, D. Iong, H. Chen, S. Zou, X. Huan, and G. Toth (2023). Global Sensitivity Analysis and Uncertainty Quantification for Background Solar Wind Using the Alfvén Wave Solar Atmosphere Model. Space Weather, 21(1), e2022SW003262, doi:10.1029/2022SW003262.
  5. K. Whitman, R. Egeland, I. G. Richardson, C. Allison, P. Quinn, J. Barzilla, I. Kitiashvili, V. Sadykov, H. M. Bain, M. Dierckxsens, M. L. Mays, T. Tadesse, K. T. Lee, E. Semones, J. G. Luhmann, M. Nunez, S. M. White, S. W. Kahler, A. G. Ling, D. F. Smart, M. A. Shea, V. Tenishev, S. F. Boubrahimi, B. Aydin, P. Martens, R. Angryk, M. S. Marsh, S. Dalla, N. Crosby, N. A. Schwadron, K. Kozarev, M. Gorby, M. A. Young, M. Laurenza, E. W. Cliver, T. Alberti, M. Stumpo, S. Benella, A. Papaioannou, A. Anastasiadis, I. Sandberg, M. K. Georgoulis, A. Ji, D. Kempton, C. Pandey, G. Li, J. Hu, G. P. Zank, E. Lavasa, G. Giannopoulos, D. Falconer, Y. Kadadi, I. Fernandes, M. A. Dayeh, A. Munoz-Jaramillo, S. Chatterjee, K. D. Moreland, I. V. Sokolov, I. I. Roussev, A. Taktakishvili, F. Effenberger, T. Gombosi, Z. Huang, L. Zhao, N. Wijsen, A. Aran, S. Poedts, A. Kouloumvakos, M. Paassilta, R. Vainio, A. Belov, E. A. Eroshenko, M. A. Abunina, A. A. Abunin, C. C. Balch, O. Malandraki, M. Karavolos, B. Heber, J. Labrenz, P. Kuhl, A. G. Kosovichev, V. Oria, G. M. Nita, E. Illarionov, P. M. O’Keefe, Y. Jiang, S. H. Fereira, A. Ali, E. Paouris, S. Aminalragia-Giamini, P. Jiggens, M. Jin, C. O. Lee, E. Palmerio, A. Bruno, S. Kasapis, X. Wang, Y. Chen, B. Sanahuja, D. Lario, C. Jacobs, D. T. Strauss, R. Steyn, J. van den Berg, B. Swalwell, C. Waterfall, M. Nedal, R. Miteva, M. Dechev, P. Zucca, A. Engell, B. Maze, H. Farmer, T. Kerber, B. Barnett, J. Loomis, N. Grey, B. J. Thompson, J. A. Linker, R. M. Caplan, C. Downs, T. Torok, R. Lionello, V. Titov, M. Zhang, and P. Hosseinzadeh (2022). Review of solar energetic particle models. Advances in Space Research, doi:https://doi.org/10.1016/j.asr.2022.08.006.
  6. N. Sachdeva, G. Toth, W. B. Manchester, B. van der Holst, Z. Huang, I. V. Sokolov, L. Zhao, Q. A. Shidi, Y. Chen, T. I. Gombosi, C. J. Henney, D. G. Lloveras, and A. M. Vasquez (2021). Simulating Solar Maximum Conditions Using the Alfvén Wave Solar Atmosphere Model (AWSoM). The Astrophysical Journal, 923(2), 176, doi:10.3847/1538-4357/ac307c.
  7. T. I. Gombosi, Y. Chen, A. Glocer, Z. Huang, X. Jia, M. W. Liemohn, W. B. Manchester, T. Pulkkinen, N. Sachdeva, Q. Al Shidi, I. V. Sokolov, J. Szente, V. Tenishev, G. Toth, B. van der Holst, D. T. Welling, L. Zhao, and S. Zou (2021). What sustained multi-disciplinary research can achieve: The space weather modeling framework. Journal of Space Weather and Space Climate, 11, 42, doi:10.1051/swsc/2021020.
  8. C. D. K. Harris, X. Jia, J. A. Slavin, G. Toth, Z. Huang, and M. Rubin (2021). Multi Fluid MHD Simulations of Europa’s Plasma Interaction Under Different Magnetospheric Conditions. Journal of Geophysical Research (Space Physics), 126(5), e28888, doi:10.1029/2020JA028888.
  9. G. Toth, Y. Chen, Z. Huang, and B. van der Holst (2021). Challenges in Modeling the Outer Magnetosphere. In R. Maggiolo, N. Andre, H. Hasegawa, and D. T. Welling, editors, Magnetospheres in the Solar System, volume 2, page 717, doi:10.1002/9781119815624.ch44.
  10. E. Camporeale, M. D. Cash, H. J. Singer, C. C. Balch, Z. Huang, and G. Toth (2020). A Gray-Box Model for a Probabilistic Estimate of Regional Ground Magnetic Perturbations: Enhancing the NOAA Operational Geospace Model With Machine Learning. Journal of Geophysical Research (Space Physics), 125(11), e27684, doi:10.1029/2019JA027684.
  11. S. P. Moschou, I. V. Sokolov, O. Cohen, G. Toth, J. J. Drake, Z. Huang, C. Garraffo, J. D. Alvarado-Gomez, and T. Gombosi (2020). Coupled MHD-Hybrid Simulations of Space Plasmas. In Journal of Physics Conference Series, volume 1623 of Journal of Physics Conference Series, page 012008, doi:10.1088/1742-6596/1623/1/012008.
  12. M. Combi, Y. Shou, N. Fougere, V. Tenishev, K. Altwegg, M. Rubin, D. Bockelee-Morvan, F. Capaccioni, Y.-C. Cheng, U. Fink, T. Gombosi, K. C. Hansen, Z. Huang, D. Marshall, and G. Toth (2020). The surface distributions of the production of the major volatile species, H2O, CO2, CO and O2, from the nucleus of comet 67P/Churyumov-Gerasimenko throughout the Rosetta Mission as measured by the ROSINA double focusing mass spectrometer. Icarus, 335, 113421, doi:10.1016/j.icarus.2019.113421.
  13. C. Dong, Z. Huang, and M. Lingam (2019). Role of Planetary Obliquity in Regulating Atmospheric Escape: G-dwarf versus M-dwarf Earth-like Exoplanets. The Astrophysical Journal Letter, 882(2), L16, doi:10.3847/20418213/ab372c.
  14. Z. Huang, G. Toth, B. van der Holst, Y. Chen, and T. Gombosi (2019). A six-moment multi-fluid plasma model. Journal of Computational Physics, 387, 134–153, doi:10.1016/j.jcp.2019.02.023.
  15. Z. Huang, G. Toth, T. I. Gombosi, X. Jia, M. R. Combi, K. C. Hansen, N. Fougere, Y. Shou, V. Tenishev, K. Altwegg, and M. Rubin (2018). Hall effect in the coma of 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 475(2), 2835–2841, doi: 10.1093/mnras/stx3350.
  16. Y. Shou, M. Combi, G. Toth, V. Tenishev, N. Fougere, X. Jia, M. Rubin, Z. Huang, K. Hansen, and T. Gombosi (2017). A New 3D Multi-fluid Dust Model: A Study of the Effects of Activity and Nucleus Rotation on Dust Grain Behavior at Comet 67P/Churyumov-Gerasimenko. The Astrophysical Journal, 850(1), 72, doi:10.3847/1538-4357/aa91ca.
  17. C. Dong, Z. Huang, M. Lingam, G. Toth, T. Gombosi, and A. Bhattacharjee (2017). The Dehydration of Water Worlds via Atmospheric Losses. The Astrophysical Journal Letter, 847(1), L4, doi:10.3847/2041-8213/aa8a60.
  18. Y. Shou, M. Combi, G. Toth, V. Tenishev, N. Fougere, X. Jia, M. Rubin, Z. Huang, K. Hansen, T. Gombosi, and A. Bieler (2016). A New 3D Multi-fluid Model: A Study of Kinetic Effects and Variations of Physical Conditions in the Cometary Coma. The Astrophysical Journal, 833(2), 160, doi:10.3847/1538-4357/833/2/160.
  19. N. Fougere, K. Altwegg, J. J. Berthelier, A. Bieler, D. Bockelee-Morvan, U. Calmonte, F. Capaccioni, M. R. Combi, J. De Keyser, V. Debout, S. Erard, B. Fiethe, G. Filacchione, U. Fink, S. A. Fuselier, T. I. Gombosi, K. C. Hansen, M. Hassig, Z. Huang, L. Le Roy, C. Leyrat, A. Migliorini, G. Piccioni, G. Rinaldi, M. Rubin, Y. Shou, V. Tenishev, G. Toth, and C. Y. Tzou (2016). Direct Simulation Monte Carlo modelling of the major species in the coma of comet 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 462, S156–S169, doi:10.1093/mnras/stw2388.
  20. K. C. Hansen, K. Altwegg, J. J. Berthelier, A. Bieler, N. Biver, D. BockeleeMorvan, U. Calmonte, F. Capaccioni, M. R. Combi, J. de Keyser, B. Fiethe, N. Fougere, S. A. Fuselier, S. Gasc, T. I. Gombosi, Z. Huang, L. Le Roy, S. Lee, H. Nilsson, M. Rubin, Y. Shou, C. Snodgrass, V. Tenishev, G. Toth, C. Y. Tzou, C. Simon Wedlund, and Rosina Team (2016). Evolution of water production of 67P/Churyumov-Gerasimenko: An empirical model and a multi-instrument study. Monthly Notices of the Royal Astronomical Society, 462, S491–S506, doi:10.1093/mnras/stw2413.
  21. Z. Huang, G. Toth, T. I. Gombosi, A. Bieler, M. R. Combi, K. C. Hansen, X. Jia, N. Fougere, Y. Shou, T. E. Cravens, V. Tenishev, K. Altwegg, and M. Rubin (2016). A possible mechanism for the formation of magnetic field dropouts in the coma of 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 462, S468–S475, doi: 10.1093/mnras/stw3118.
  22. Z. Huang, G. Toth, T. I. Gombosi, X. Jia, M. Rubin, N. Fougere, V. Tenishev, M. R. Combi, A. Bieler, K. C. Hansen, Y. Shou, and K. Altwegg (2016). Four-fluid MHD simulations of the plasma and neutral gas environment of comet 67P/Churyumov-Gerasimenko near perihelion. Journal of Geophysical Research (Space Physics), 121(5), 4247–4268, doi: 10.1002/2015JA022333.
  23. N. Fougere, K. Altwegg, J. J. Berthelier, A. Bieler, D. Bockelee-Morvan, U. Calmonte, F. Capaccioni, M. R. Combi, J. De Keyser, V. Debout, S. Erard, B. Fiethe, G. Filacchione, U. Fink, S. A. Fuselier, T. I. Gombosi, K. C. Hansen, M. H¨assig, Z. Huang, L. Le Roy, C. Leyrat, A. Migliorini, G. Piccioni, G. Rinaldi, M. Rubin, Y. Shou, V. Tenishev, G. Toth, and C. Y. Tzou (2016). Three-dimensional direct simulation Monte-Carlo modeling of the coma of comet 67P/Churyumov-Gerasimenko observed by the VIRTIS and ROSINA instruments on board Rosetta. Astronomy and Astrophysics, 588, A134, doi:10.1051/0004-6361/201527889.
  24. A. Bieler, K. Altwegg, H. Balsiger, J.-J. Berthelier, U. Calmonte, M. Combi, J. De Keyser, B. Fiethe, N. Fougere, S. Fuselier, S. Gasc, T. Gombosi, K. Hansen, M. Hassig, Z. Huang, A. Jackel, X. Jia, L. Le Roy, U. A. Mall, H. Reme, M. Rubin, V. Tenishev, G. Toth, C.-Y. Tzou, and P. Wurz (2015). Comparison of 3D kinetic and hydrodynamic models to ROSINACOPS measurements of the neutral coma of 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 583, A7, doi:10.1051/0004-6361/201526178.
  25. F. A. Nuevo, Z. Huang, R. Frazin, W. B. Manchester, M. Jin, and A. M. Vasquez (2013). Evolution of the Global Temperature Structure of the Solar Corona during the Minimum between Solar Cycles 23 and 24. The Astrophysical Journal, 773(1), 9, doi:10.1088/0004-637X/773/1/9.
  26. Z. Huang, R. A. Frazin, E. Landi, W. B. Manchester, A. M. Vasquez, and T. I. Gombosi (2012). Newly Discovered Global Temperature Structures in the Quiet Sun at Solar Minimum. The Astrophysical Journal, 755(2), 86, doi:10.1088/0004-637X/755/2/86.
  27. F. A. Nuevo, A. M. Vasquez, R. A. Frazin, Z. Huang, and W. B. Manchester (2012). The 3D solar corona Cycle 24 rising phase from SDO/AIA tomography. In C. H. Mandrini and D. F. Webb, editors, Comparative Magnetic Minima: Characterizing Quiet Times in the Sun and Stars, volume 286, pages 238–241, doi:10.1017/S1743921312004905.
  28. A. M. Vasquez, R. A. Frazin, Z. Huang, W. B. Manchester, and P. Shearer (2012). The 3D solar minimum with differential emission measure tomography. In C. H. Mandrini and D. F. Webb, editors, Comparative Magnetic Minima: Characterizing Quiet Times in the Sun and Stars, volume 286, pages 123–133, doi:10.1017/S1743921312004735.
  29. A. M. Vasquez, Z. Huang, W. B. Manchester, and R. A. Frazin (2011). The WHI Corona from Differential Emission Measure Tomography. Solar Physics, 274(1-2), 259–284, doi:10.1007/s11207-010-9706-1.
  30. G. Toth, B. van der Holst, and Z. Huang (2011). Obtaining Potential Field Solutions with Spherical Harmonics and Finite Differences. The Astrophysical Journal, 732(2), 102, doi:10.1088/0004-637X/732/2/102.