• Skip to primary navigation
  • Skip to main content
  • Skip to footer
CLASP site logo svg
  • Contact Us
  • CLASP News
  • Give to U-M Climate & Space

Search

  • About Us
    • Contact Us
    • Visit Us
    • Department Overview
    • #18 (no title)
    • Publications
    • History of CLaSP
      • CLaSP History: Atmospheric and Oceanic
      • CLaSP History: Space Science and Engineering
    • Daily Planet Newsletter
    • Team Spotlights
      • Faculty Spotlights
      • Student Spotlights
      • Alumni Spotlights
    • CLASP Inranet
    • CLASP Seminar Recordings
  • Research
    • Atmospheric & Climate Sciences
      • Atmosphere – Biosphere Interactions
      • Atmospheric Chemistry
      • Atmospheric Dynamics
      • Climate: Change & Modeling
      • Weather: Clouds & Precipitation
    • Space & Planetary Sciences
      • Aeronomy
      • High Energy Density Physics/Laboratory Astrophysics
      • Thermosphere, Ionosphere, and Magnetosphere
      • Planetary Atmospheres & Magnetospheres
      • Sun, Solar Wind & Heliosphere
      • Space Weather
    • Theory & Computational Methods
      • Numerical Methods & Scientific Computing
      • Statistical Methods & Data Assimilation
      • Center for Radiative Shock Hydrodynamics
      • Center for Space Environment Modeling
      • SWMF Downloadable software
    • Instrumentation & Observational Methods
      • Ground-based and Airborne Instrumentation
      • Space Missions & Instrumentation
      • Radiative Transfer, Remote Sensing & Instrumentation
      • Space Physics Research Laboratory
    • Labs, Centers & Research Groups
  • People
  • Academics
    • Why Michigan for Climate & Space?
    • Undergraduate Studies
      • Declaring your Climate & Space major
      • BSE Climate and Meteorology
        • Climate Science and Impacts Concentration
        • Meteorology Concentration
      • BSE Space Science & Engineering
        • Space Science Concentration
        • Space Instrumentation Concentration
      • Climate and Space Sciences and Engineering Minor
    • Undergraduate Research
      • REU at Climate & Space
      • UM-SANSA International Research Experience for Students (IRES)
    • Graduate Studies
      • Graduate Admissions
      • Master’s Program
        • The Master of Engineering Degree in Applied Climate
        • The Master of Engineering Degree in Space Engineering
        • The Master of Science Degree in Atmospheric and Space Sciences
      • Climate Change Solutions Graduate Certificate
        • Climate Solutions Certificate Coursework
        • Climate Solutions Certificate Electives
        • Climate Solutions How to Apply
      • Sequential Undergraduate/Graduate Studies (SUGS)
      • PhD Program
      • G.R.E.A.T Workshop
    • Course Syllabus Information
    • Course schedule information
    • Contact Us
  • Resources
    • For Undergraduate Students
    • For Graduate Students
    • For Fellowships and Postdocs
    • Student Groups
      • Graduate and Undergraduate Student Organization (GUStO)
      • Michigan Geophysical Union
    • Careers
      • Job Placement Info
    • Security Policy
    • CSRB Building Safety
    • Climate & Space Faculty Committees 2022-2023
  • Alumni
    • National Advisory Board
    • Give to U-M Climate & Space
    • Contact Us
    • CLASP News
    • Give to U-M Climate & Space

Space Physics Research Laboratory to build “main electronics box” for DAVINCI mission instrument

SPRL will provide components for the Venus Mass Spectrometer (VMS)

Written by: ejolsen

November 9, 2021

NASA summarizes the role of the Venus Mass Spectrometer (VMS) instrument on the upcoming DAVINCI mission to Venus in a new update. The DAVINCI mission is currently slated for launch in 2029.

While the VMS itself will be assembled at NASA’s Goddard Space Flight Center in Greenbelt, MD., the U-M Space Physics Research Laboratory will play a key role in building the electronics heart of the VMS.

“Meet VMS – the briefcase-sized chemistry lab headed to Venus

“Short for Venus Mass Spectrometer, VMS is one of five instruments aboard the DAVINCI descent probe. Launching in 2029, DAVINCI will be the first US probe mission to enter Venus’ atmosphere in over 40 years. The goal of the mission is to explore Venus to determine if it was habitable, and to understand how it ended up as inhospitable as it did...”

Read the full article here: https://www.nasa.gov/feature/goddard/2021/davinci-vms

Venus Mass Spectrometer (VMS) instrument.
Image credit: NASA

Climate & Space Prof. Sushil Atreya will also play a major role on the DAVINCI mission, leading the origin and evolution of Venus atmosphere scientific effort. Read more about Prof. Atreya’s role here: https://clasp.engin.umich.edu/2021/06/09/professor-sushil-atreya-will-play-a-leading-role-on-the-davinci-mission-to-venus/

  • Read more about the Space Physics Research Laboratory: https://xtrm-sprl.engin.umich.edu/
  • Read more about DAVINCI+ here: https://www.nasa.gov/feature/goddard/2021/nasa-to-explore-divergent-fate-of-earth-s-mysterious-twin-with-goddard-s-davinci

Explore: CLASP Climate and Space Sciences and Engineering Space Uncategorized

Footer

CoE-horiz-logo-footer

  • Contact Us
  • CLASP News
  • Give to U-M Climate & Space
  • Michigan Engineering
  • Strategic Vision
  • Graduate and Professional
  • Undergraduate
  • U-M Engineering Research News

© 2021 The Regents of the University of Michigan Ann Arbor, MI 48109 USA

Privacy Policy | Non-Discrimination Policy | Campus Safety

  • Email
  • Facebook
  • Instagram
  • LinkedIn
  • Twitter
  • YouTube

© 2023 The Regents of the University of Michigan Ann Arbor, MI 48109 USA Privacy Policy | Non-Discrimination Policy | Campus Safety