Climate/Space 321: Earth and Space System Dynamics Winter 2025

Tu/Th 12:00pm to 1:30pm, CSRB 2246

Instructors:	Cheng Li
Email:	chengcli@umich.edu
IA:	Jeff (Yujian) Fu, yujianfu@umich.edu
Office hours:	Monday 1-3pm (hold by Yujian Fu), CSRB 1535

Students requiring accommodations or special assistance with course requirements should contact me as soon as possible (by the mid of January) to discuss appropriate academic accommodations for qualified students with disabilities.

COURSE OBJECTIVES

- 1. Understand the meanings of technical terms such as pressure, density, temperature and how they are related in atmospheres
- 2. Understand stability and instability of motions
- 3. Understand the meaning of vorticity in describing fluid motions
- 4. Can use proper mathematical notation to describe the motion of atmospheres
- 5. Can use calculus to compute atmospheric quantities
- 6. Can use mathematical software and computer program to draw figures, write equations and deduce meanings

WORKLOAD

- 1. 9 homework assignments
- 2. 1 scripting or 1 15-minute recitation presentation
- 3. Two exams, open script, close book

PROGRAMMING LANGUAGE

- 1. Python/Jupyter Notebook (required for homework)
- 2. LaTex/Overleaf (required for scripting)
- 3. Tutorials on how to write Python and LaTex code will be provided

COURSE MATERIALS

(1) Textbook:

- Fundamentals of Atmospheric Physics, Murry Salby
- Atmosphere, Ocean, and Climate Dynamics, John Marshall
- Atmosphere-Ocean dynamics, Adrian Gill
- An Introduction to Dynamic Meteorology, James Holton

(2) Scripts and recitation

- There will be **three** recitation sessions during the whole semester (see Course Schedule at the end of the syllabus).
- At the end of each lecture, one student will be chosen by random to summarize today's lecture in the form of (1) a formal scripting in LaTeX or (2) in the form of a recitation.
 - If you are chosen to summarize in the **form of a recitation**, you will present the material for 15 minutes to the whole class during a recitation session. You are only allowed to use whiteboard and marker for recitation (no digital forms allowed). Please email your handwritten/whiteboard/LaTeX version of the recitation/scripting to the IA after the recitation session. IA will typeset it in a formal LaTex script.
 - If you are chosen to summarize in the **form of a formal scripting**, you are required to submit a formal well-formatted LaTeX script. Please complete the LaTeX script in the shared Overleaf document in a week after receiving the scripting assignment
- Materials covered in the recitation session will be compiled in a shared LaTex script to be used in your exams.
- The formal shared LaTex script will be the **only** reference materials you can use in your exams.

(3) Online programming guides and AI

- Example programming guide in Python and LaTex will be provided as online resources.
- You are allowed to use AI to help you with your study/homework or your scripting tasks. But you cannot use AI during your exams.

Component	Explanation	Weight	Grading Distribution
Attendance & Participation	If you are chosen at the end of the class but do not show	10%	A+ 97% A 93%
	up, you will lose all 10% of		A- 90%
	the second lecture.		B+ 87% B 83%
10 Homework assignments	Each homework assignment is worth 20 points. 1 point off will be taken per late day	40%	B- 80% C+ 77% C 73%
First exam (2/13)	Exams are conducted in classroom. You can only use	20%	C- 70% D+ 67% D 63%
Second exam (4/8)	the shared script for referencing.	20%	D- 60%
recitation and scripting	Every student needs to do either a scripting or a recitation of a designated lecture material. If you are chosen to the scripting or recitation, you do not need to turn in this week's homework. You will automatically earn a full score for this homework.	10%	
TOTAL		100%]

COURSE EVALUATION

COURSE SCHEDULE*

Week	Date	Торіс		Assignments			
Part I: Description of physical world: Unit, dimension and geometry							
1	Jan 9	Overview of the course					
2	Jan 14	Unit, dimension and scale	G. Maltese	HW 1 out			
			(recitation)				
	Jan 16	Review of geometry and physical concepts	G. Koontz				
			(recitation)				
3	Jan 21	Review of mathematical concepts and vector	J. Kirkey	HW 1 due / HW2			
		calculus	(scripting)	out			
	1	Part II: Atmosphere in one dimens	ion	1			
3	Jan 23	Pressure-density relation: Hydrostatic balance	J. Toogood				
			# E. Geiss				
			(recitation)				
4	Jan 28	Pressure-temperature relation: Thermodynamics	N. Vandenbrink	HW 2 due / HW 3			
		(1)	(recitation)	out			
	Jan 30	Pressure-temperature relation: Thermodynamics	Q. Garrow				
-		(2)	(recitation)				
Rea	ading	Salby – Fundamentals of Atmospheric Physics					
		Chapter 1, 1.1, 1.2					
		Chapter 2, 2.1, 2.2, 2.3, 2.4					
		Chapter 3, 3.1, 3.2 3.3, 3.6					
_		Chapter 6, 6.1, 6.2, 6.3, 6.4					
5	Feb 4	Stability: atmospheric oscillation	(scripting)	HW 3 due / HW 4			
	Tab C	Instability atmospheric convertion	(corinting)	out			
6	Feb 0	Instability: atmospheric convection	(scripting)				
6	Feb 11	First Even in class oner seriet but class back		HW 4 due			
	Feb 13	First Exam, in class, open script but close book					
_	5 1 40	Part III: Atmosphere in motion					
/	Feb 18	Atmospheric process (1): diffusion		HW 5 OUT			
	Feb 20	Atmospheric process (2): transport					
8	Feb 25	Equation of motion		HW 5 due / HW 6			
	F 1 27			out			
	Feb 27	Laminar flow: Bernoulli's principle					
9	Mar 4	Winter Break – no class					
10	Mar 6	Turkulant flavn Davis ald/a strang					
10	Mar 11	lurbulent flow: Reynold's stress		HW 6 due / HW /			
		Dent N/c Atmosphere and an actual		out			
10	Mar 12	Part IV: Atmosphere under rotati	on				
10	IVIdi 13	Notating reference frame: Coriolis force					
	Iviar 18	Motion under rotation: rayior's theorem		HW / due / HW 8			
	Mar 20	Coastrophic relation		ουι			
12	Nar 25	Density wind relation					
12	iviar 25	Density wind relation		HW 8 due / HW 9			
	N/0 :: 27	Venticity and Kelvin's the survey		ουι			
12	iviar 27	vorticity and Keivin's theorem					
13	Apri	Ekman transport	1	HW 9 due			

	Apr 3	Recitation #2 (5 presentations + 5 scripting)		
14	Apr 8	Second Exam, in class, open script but close book		
Part V: Atmosphere on a sphere				
14	Apr 10	Orthogonal coordinate system		
15	Apr 15	Primitive equations		HW 10 out
	Apr 17	General circulation of atmospheres		
16	Apr 22	Recitation #3 (4 presentations)		HW 10 due

* **22** presentations + scripting are scheduled now. Current enrollment number is **26**.

* Schedule and other syllabus/course elements are subject to change at the discretion of the instructor. Changes will be announced within an appropriate time frame.