Machine Learning in Earth & Environmental Sciences

Course Syllabus – Mohammed Ombadi (ombadi@umich.edu)

Course Description

The rapid increase in environmental data acquisition over the last few decades has provided us with an unprecedented opportunity to draw insights from big data on the behavior of environmental systems. This course aims to introduce students to statistical methods, ranging in complexity from autoregression to machine learning models.

The course covers the basic theory behind machine learning and provides hands-on experience in building machine learning models. Students will learn to apply these models for both prediction and hypothesis formulation purposes. The methods will be taught through example applications in environmental sciences, with a specific focus on climate and hydrologic applications.

Examples include short-term forecasts of temperature and precipitation, streamflow forecasting in selected hydrologic basins, understanding the relative contributions of temperature and precipitation in snowmelt trends, regional clustering of precipitation patterns and trends, and climatic teleconnections in regulating regional precipitation patterns.

Learning Outcomes

After successfully completing this course, students will be able to:

- Identify the basic statistical features of environmental data.
- Understand the differences between parametric/non-parametric and linear/nonlinear models and select the most appropriate statistical models based on the research problem and/or availability of data.
- Conduct exploratory analysis on data and develop hypotheses regarding variable interactions.
- Develop data-driven models for prediction and evaluate their adequacy.
- Gain an understanding of the basic theory behind machine learning models.

Teaching Method and Philosophy

Teaching Methods and Philosophy: The teaching method for this course combines lectures, small group work, and active (experiential) learning. Lectures will introduce concepts, methodologies, and examples of applications in climate and environmental sciences.

Small group work is primarily focused on the final project, where each group of 2 to 4 students will apply some of the methods introduced in the course to a problem of their own interest. Experiential learning is integrated into homework assignments, where students will receive Python codes and data files. They will be tasked with applying the methods and answering a set of questions.

Class Climate & Inclusivity

Diversity is not only appreciated but celebrated in this classroom. The teaching staff maintains a zero-tolerance policy towards any form of discrimination. Students are expected to demonstrate respect, civility, and considerate conduct. Additionally, recognizing differences in language, culture, and personal viewpoints is encouraged. Feedback on issues related to diversity in the classroom is welcomed.

Required Computing Software

Coding scripts for the data analysis methods will be provided in Python. Students are welcome to use R or MATLAB to complete assignments if they prefer, but they must write their own scripts.

Grade Breakdown

Participation in class / Quizzes	10%
Homework Assignments	60%
Project	30%

Course Schedule

Week	Торіс	Application Example
1	Review of basic statistics: Random variables,	Summarize the statistics of
	measures of central tendency (mean, median, mode),	temperature and precipitation
	variance, higher moments (skewness and kurtosis),	in Ann Arbor, Michigan
	sample vs population statistics, probability	
	distributions	
2	Hypothesis testing and statistical dependence:	Explore changes in global
	one- and two-sided hypothesis testing, statistical	mean surface temperature
	significance, confidence interval, Pearson	(compare two periods),
	correlation, nonparametric correlations (e.g.,	Explore the relationship
	Spearman), partial correlation	between snowmelt,
		precipitation and temperature
		over selected watersheds in
		Western US
3	Trend Analysis: Linear regression, non-parametric	Explore trends in global
	methods (Mann-Kendall test), stationarity	mean surface temperature.
4	Clustering algorithms: K-means, density-based	Identify regional
	clustering, expectation-maximization methods	precipitation patterns in the
		Contiguous United States
5	Multiple linear regression: Maximum likelihood	Prediction of streamflow
	parameter estimation, loss functions (L1 and L2	using input variables of
	norms), model evaluation and goodness of fit.	precipitation,
		evapotranspiration and soil
		moisture. Build models with
		different number of inputs

		and evaluate their goodness of fit.	
6	Intro to machine learning: Gradient descent and backpropagation, feedforward neural networks, Multilayer Perceptron	Repeat application in 5 using feedforward neural networks.	
7	Decision Trees: Random Forest models	Repeat application in 5 using random forests with/without discretization.	
8	Recurrent Neural Networks: Applications to temporal dynamics, long-short term memory	Snowmelt prediction	
9	Convolutional Neural Networks: Applications to image processing (e.g., remotely sensed and gridded datasets)	Short-term forecast of precipitation using gridded observations	
	Students start forming groups and discuss project topics with instructors		
10	Autoencoders and representation learning	Applications for dimensionality reduction of atmospheric pressure data	
11	Physics-informed machine learning: Enforcing simple physics-based constraints, nonlinear dynamics-based neural networks	Modeling Evapotranspiration using water balance as a constraint	
12	Information theory: Entropy, Mutual information, conditional mutual information, KL Divergence	Explore the relationship between snowmelt, precipitation and temperature over selected watersheds in Western US.	
13	Causal Inference: Granger and predictive causality, Transfer Entropy, Graph-based methods	Evaluating the relative contribution of environmental variables in driving evapotranspiration	
14	Graphical models and Graph Neural Networks	Applications to streamflow and water quality modeling	