Department of Climate and Space Sciences and Engineering in the College of Engineering at the University of Michigan


Jeremy Bassis

Jeremy N. Bassis

Associate Professor

Office: 2529 Space Research Building
Phone: (734) 615-3606
[ Link to website ]


Ph.D., Scripps Institution of Oceanography, La Jolla, California
B.Sc. Physics, Pennsylvania State University, University Park, Pennsylvania


  • Ice sheet and glacier dynamics
  • Fracture mechanics
  • Sea level rise
  • Planetary science
  • Complex systems

Personal Introduction

The broad theme of my research is studying the often complicated array of dynamic processes that affect the evolution of ice sheets and glaciers and how they interact with and respond to past, present and future climate change.  One of the ice sheet processes that my research targets is improving our understanding if the mechanics of iceberg calving- a process that accounts for up to two thirds of the mass discharged from the cryosphere to the ocean.  Not only does this have important implications for century time-scale sea level rise, but because fractures can propagate very quickly, iceberg calving introduces a “fast” time-scale into the response of the ice sheets to climate change that is not accounted for in numerical models.  


Interested undergraduate and graduate students are welcome to drop me an email to learn more about opportunities for cryospheric research within my research group.

Honors, Awards and Accomplishments

Career Award 2011

Professional Service

Associate Editor Journal of Geophysical Research - Earth Surfaces (2012-present)


Walker C.C., R. Czerwinski, J.N. Bassis and H.A. Fricker, (2013), Structural and environmental controls on Antarctic ice shelf rift propagation inferred from satellite monitoring, Journal of Geophysical Research- Earth Surfaces, in press.

Bassis, J. N., and Jacobs, S., (2013), Diverse calving patterns linked to glacier geometry. Nature Geoscience, 6(10), 833-836.

Duddu, R., J. N. Bassis, and H. Waisman, (2013), A numerical investigation of surface crevasse propagation in glaciers using nonlocal continuum damage mechanics, Geophysical Research Letters., 40, 3064–3068, doi:10.1002/grl.50602. 

Bassis, J.N. and C.C. Walker, (2011), Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice, Proceedings of the Royal Society, doi: 10.1098/rspa.2011.0422, p. 1-19. 

Bassis, J.N., (2011), The Statistical Physics of Iceberg Calving and the Emergence of Universal Calving Laws, Journal of Glaciology, (57)201, p. 3-17.  

Bassis, J.N., (2010), Hamilton Type Principles Applied to Ice Sheet Dynamics:  New approximations for the large-scale flow of ice sheets, Journal of Glaciology, (56)197, p. 497-513. 

Fricker, H.A., N. W. Young, R. Coleman, J. N. Bassis, J.B. Minster, (2005), Multi-year monitoring of rift propagation on the Amery Ice Shelf, East Antarctica, Geophysical Research Letters, 32, L02502, doi:10.1029/2004GL021036. 

Bassis, J. N., R. Coleman, H. A. Fricker, J. B. Minster, (2005), Episodic propagation of a rift on the Amery Ice Shelf, East Antarctica, Geophysical Research Letters, 32, L06502, doi:10.1029/2004GL022048. 

Fricker H. A., J.N. Bassis, J.B. Minster, D. R. MacAyeal, (2005), ICESat's new perspective on ice shelf rifts: The vertical dimension, Geophysical Research Letters, 32, L23S08, doi:10.1029/2005GL025070. 

Walker, C.C., J.N. Bassis and M. Liemohn, 2012, On the application of simple rift basin models to the South Polar Region of Enceladus, Journal of Geophysical Research, 117, E07003, doi:10.1029/2012JE004084. 

Cathles, L.M., D.S. Abbot, J.N. Bassis, D.R. MacAyeal, 2011, Modeling surface-roughness/solar-ablation feedback: Application to small-scale surface channels and crevasses of the Greenland Ice Sheet, Annals of Glaciology, 52(59), p. 99-108. 

Walter, F., S. O'Neel, D. McNamara, W. T. Pfeffer, J. N. Bassis, and H. A. Fricker (2010), Iceberg calving during transition from grounded to floating ice: Columbia Glacier, Alaska, Geophysical Research Letters, 37, L15501, doi:10.1029/2010GL043201.  Editors Highlight (Sponsored by NSF)

D.R. MacAyeal, E.A. Okal, R. Aster and J.N. Bassis, (2009), Seismic Observations of Glaciogenic Ocean Waves (Micro-Tsunamis) on Icebergs and Ice Shelves, Journal of Glaciology, (55)190, p. 193-206.

Alley, R.B., I. Joughin, H.J. Horgan, T.K. Dupont, B.R. Parizek, S. Anandakrishan, K.M. Cuffey, J.N. Bassis, (2008), A Simple Law for Ice-Shelf Calving (2008), Science, (322)5906, p. 1344. 

Bassis, J.N., The Physics of Ice Sheets, (2008), in special International Polar Year edition of Physics Education, 43(4), p. 375-382. 

MacAyeal, D.R., E. Okal, R. Aster, J.N. Bassis, (2008), Seismic and Hydro-Acoustic Tremor Generated by Colliding Icebergs, Journal of Geophysical Research, 113, doi:10.1029/2008JF001005. 

Bassis, J.N., H.A. Fricker. R. Coleman, Y. Bock, J. Behrens, D. Darnell, M. Okal, J.B Minster, (2008), An Investigation Into the Forces that Drive Ice Shelf Rift Propagation,  Journal of Glaciology,  184(54), p. 17-27.  Profiled 

Bassis, J.N., H.A. Fricker, J.B, (2007), Seismicity and Deformation Associated with Ice Shelf Rift Propagation, Journal of Glaciology, 183(53), p. 523-536.  Profiled

Jansen, V., Coleman, R., J.N. Bassis, (2009), GPS-derived Strain Rates on an Active Ice Shelf Rift, Survey Review, (41)311, p. 14-25.

MacAyeal, D., E. Okal, J.N. Bassis, et al., (2006), Transoceanic wave propagation links iceberg calving margins of Antarctica with storms in Tropics and Northern Hemisphere, Geophysical Research Letters 33, doi:10.1029/2006GL027235.

Martinez, M., H. Harder, T.A. Kovacs, J.B. Simpas, J.N. Bassis, et al., (2003), OH and HO2 concentrations, sources, and loss rates during the Southern Oxidants Study in Nashville, Tennessee, summer 1999, Journal of Geophysical Research, 108 (D19), 4617, doi:10.1029/2003JD003551.

Updated: 2015-09-02